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Abstract. In this article we describe a new Energy-Conserving Navier-Stokes code (ECNS)
for the simulation of incompressible turbulent flow in wind-turbine wakes. The discretization
in space and time is energy conserving, which results in two important properties: (i) the
discretization does not introduce numerical viscosity and (ii) the discretization is stable for any
mesh and any time step. A new class of non-diffusive actuator methods is used to simulate the
effect of the wind turbine on the flow. The non-diffusive properties of the code are illustrated
with the roll-up of a tip vortex and the flow through an actuator disk.

1. Introduction

In the last two decades wake calculations have progressed significantly: from ‘parabolized’
RANS (Reynolds-Averaged Navier-Stokes) simulations with turbines represented by actuator
disks to ‘elliptic’ LES (Large Eddy Simulation) simulations with rotating actuator lines [1].
LES is clearly a more accurate approach than RANS due to the highly unsteady turbulent
nature of wind turbine wakes [2]. However, LES computations of wakes require a different
numerical treatment than RANS. Firstly, the ‘turbulent’ (modeled, eddy) viscosity in LES
is much smaller than in RANS. In most RANS methods the eddy viscosity is so large that
numerical viscosity is unnoticed, making results rather insensitive to details of the (convective)
discretization. However, in LES methods numerical viscosity can easily overwhelm the physical
viscosity and be detrimental for turbulence simulations [3, 4]. This requires a discretization
with a minimum amount of numerical viscosity. Secondly, due to limitations in computer speed
and memory, practical LES simulations of wind turbine wakes are mostly under-resolved. The
order of (local) accuracy of a method, a notion related to the limit of vanishing mesh size, does
not guarantee that (globally) accurate results will be obtained on coarse meshes. Instead, we
will therefore focus on methods that possess some important properties on coarse meshes and
for large time steps: well-posedness and stability. We aim to construct a spatial and temporal
discretization that is ideally both non-dissipative (to prevent premature decay of turbulence),
and stable (independent of the modeled viscosity and independent of the mesh or time step).

In order to achieve these properties, we will focus on so-called energy-conserving discretization
methods, and propose a new Navier-Stokes solver for wind-turbine wake simulations: ECNS -



Energy-Conserving Navier-Stokes solver. Since we will use actuator methods to represent the
effect of the turbines on the flow, we do not need to construct body-fitted grids. This is a great
advantage since it allows us to use (staggered) cartesian grids, on which energy conservation
is relatively straightforward to achieve. Staggered grids and the spatial discretization will be
introduced in section 2. In section 3 a temporal discretization is proposed which keeps the
energy conservation property when marching in time. The resulting (spatial and temporal)
discretization is free of numerical viscosity and stable for any mesh and time step. In line
with these properties we introduce in section 4 a new class of actuator methods that are free
of the smearing effect present in conventional actuator methods. In section 5 details of the
parallel implementation are discussed. Section 6 shows the energy-conserving properties and
non-diffusive actuator treatment in a number of numerical experiments.

2. Spatial discretization

2.1. Governing equations

The governing equations for incompressible flow are those describing conservation of mass and
momentum:

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ f , (2)

defined on a domain Ω and supplemented with suitable initial conditions and boundary
conditions. The equation for kinetic energy k = 1

2
|u|2 is, for incompressible flows, derived

from the momentum equation and as such expresses secondary conservation. Upon integration
over the entire domain one obtains, with periodic or no-slip boundary conditions,

dK

dt
= −ν(∇u,∇u) + (f ,u), (3)

where the total kinetic energy is defined by K =
∫

Ω
k dΩ = 1

2
(u,u). Equation (3) shows that

the total energy of the flow is unaffected by the pressure and convective terms, but changed
only by the diffusive terms and body forces. If equation (3) (with f = 0) can be satisfied in a
discrete sense, then the discrete solution is bounded, independent of grid layout or time step.

2.2. Staggered grid

We spatially discretize equations (1)-(2) using a finite volume method on a staggered cartesian
grid, see figure 1, and [5, 6]. A staggered grid yields a natural coupling between the divergence
operator in equation (1) and the gradient operator in equation (2). We obtain the following
semi-discrete system of equations:

Mu(t) = 0, (4)

Ω u̇(t) = −C(u(t)) + νDu(t)−Gp(t) + F (t). (5)

The diagonal matrix Ω = diag(Ωu,Ωv) contains the finite volume sizes of the u- and v-volumes,
and M , C, G and D represent the discrete divergence, convection, gradient and diffusion
operators, and F the effect of body forces. By approximating all integrals with the midpoint
method we obtain the following properties:

(Gp, u) = −(p,Mu) = 0, (6)

(C(u), u) = 0, (7)

(Du, v) = (u,Dv), (Du, u) ≤ 0. (8)



The convective terms do not contribute to the energy equation (due to central differencing), and
the pressure terms do not contribute due to the strong coupling between velocity and pressure,
inherent to the staggered grid approach. This gives the following semi-discrete equivalent of
equation (3):

dK

dt
= ν(Du, u). (9)

In the limit of vanishing viscosity the discretization ensures that energy is conserved in space.
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Figure 1: Staggered grid example with p-volumes (white) and an example of a u-volume (light
gray) and v-volume (dark gray).

3. Temporal discretization

We consider Runge-Kutta methods for time integration of equations (4)-(5). Runge-Kutta
methods can combine high-order with good stability and efficiency, they allow easy adaptive
step size selection and are self-starting. A general (implicit or explicit) Runge-Kutta method
applied to equations (4)-(5) reads [7, 8]:

Ui = un +∆t

s
∑

j=1

aij(Nj −Gpj), MUi = 0, (10)

un+1 = un +∆t

s
∑

i=1

bi(Ni −Gpn+1), Mun+1 = 0, (11)

with aij , bi, ci the weights of the Runge-Kutta method, ti = tn + ci∆t, s the number of stages,
and N containing convective and diffusive terms. We will choose the weights of the Runge-Kutta
method such that energy is also conserved in time. Upon taking the square of equation (11) and
inserting (10) we obtain the fully discrete evolution equation for the kinetic energy:

‖un+1‖
2 = ‖un‖

2 + 2∆t

s
∑

i=1

bi (PNi, Ui)−∆t2
s
∑

i,j=1

(biaij + bjaji − bibj) (PNi, PNj) . (12)

Here we have introduced for convenience the projection operator P = I−GL−1M which ensures
that the solution stays divergence-free. Conservation of energy requires that the last two terms



in (12) vanish. The term (PNi, Ui), is zero due to our spatial discretization: (C(Ui), Ui) = 0
and (Gpi, Ui) = 0. For the last term to be zero the coefficients a and b from the Runge-Kutta
tableau should satisfy

biaij + bjaji − bibj = 0. (13)

A class of methods that satisfies this condition is based on Gauss quadrature, see table 1. The
lowest (second order) method is also known as the implicit midpoint method. With the Gauss
methods, the fully discrete energy equation (12) can be written as

1
2
‖un+1‖

2 − 1
2
‖un‖

2

∆t
=

s
∑

i=1

bi(DUi, Ui), (14)

which is the discrete equivalent of equation (3). The discrete energy can therefore, like the
continuous energy, only decrease, due to viscous effects. In case viscosity is absent the energy
stays exactly constant in time. The discretization is therefore stable and non-dissipative.

We note that the choice for implicit or explicit time integration methods depends on the
problem at hand. If the time step of the problem is dictated by accuracy rather than stability it
might be better to opt for explicit methods, even though this introduces an energy conservation
error. In that case we use one of the explicit Runge-Kutta methods mentioned in [7].

Table 1: Gauss methods, 2nd and 4th order.
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4. Actuator methods

In sections 2 and 3 we have introduced a discretization in space and time that does not introduce
artificial diffusion and is stable for any mesh and any time step. We will pursue here this non-
dissipative approach when modeling actuators.

Actuator methods are used in wind-turbine wake simulations to represent the action of the
blades on the flow without the need of constructing a (body-fitted) computational grid. A
widely used method is based on discrete Dirac functions, which spread the force on the actuator
to the surrounding grid points, see e.g. [9]. Such methods have a free ‘regularization’ parameter
and introduce some ‘smearing’ depending on this parameter. We will consider a new class of
methods, Immersed Actuator Methods (IAM), that do no have such a free parameter and which
introduce less smearing effects. Here we give a short introduction into the IAM - for more
information we refer to [10] (published in this issue).

4.1. Steady actuators

We consider the incompressible Navier-Stokes equations with an external force F in integral

form, since we will be dealing with discontinuities:

∫

Ω

∂u

∂t
dΩ +

∫

Γ

uu · n dΓ =

∫

Γ

−pn dΓ +

∫

Γ

ν(∇u+ (∇u)T ) · n dΓ + F , (15)

where Ω is a control volume with boundary Γ, see figure 2a. In actuator methods F represents
the action of a body S on the flow and can be written as a surface integral of pressure and shear



stresses:

F =

∫

S
f b(ξ(s)) dA

(

=

∫

S
f b(ξ(s))

∣

∣

∣

∣

dξ

ds

∣

∣

∣

∣

ds

)

, (16)

where f b is a surface stress (force per unit area) which depends on the position on the surface
ξ parameterized by s; see figure 2a. We discretize an actuator surface by representing it by
N piecewise linear segments (‘panels’). The integral (16) changes into a summation over these
panels:

F =
N
∑

l=1

f b
l∆Al, (17)

where ∆Al is the area of panel l and f b
l the surface stress acting on it. With the actuator

discretized in panels, we apply equation (15) to a finite volume. Like in the continuous case, a
volume Ωi,j gets a contribution from f b

l if Ωi,j is intersected by the body S (see figure 2b). The
force on finite volume Ωi,j is simply given by

F i,j =
N
∑

l=1

f b
lh

i,j
l , (18)

where hi,jl is the area of panel l contained in volume Ωi,j.
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Figure 2: Steady actuator with surface forces.

4.2. Moving actuators

In the unsteady case, equation (15) is integrated in both space and time. Assuming a stationary
volume Ω we obtain

[
∫

Ω

udΩ

]t2

t1

=

∫ t2

t1

(
∫

Γ

(

−uu+ ν(∇u+ (∇u)T )
)

· n− pn dΓ

)

dt+

∫ t2

t1

F (t) dt. (19)

We consider an actuator surface S moving in time. In two dimensions the actuator surface is a
contour which traces out an area V in time. This area is parameterized as ξ(s, t), see figure 3a.
The total impulse exerted by the actuator on the flow is given by

I =

∫ t2

t1

F (t) dt =

∫ t2

t1

∫

S
f b(ξ(s, t), t) dAdt =

∫ t2

t1

∫

S
f b(ξ(s, t), t)

∣

∣

∣

∣

∂ξ

∂s

∣

∣

∣

∣

ds dt. (20)



The integral in terms of the parametric representation (s, t) can be written in terms of an integral
in space. For details we refer to [10]. The resulting equation is

I =

∫∫

V

f b(x)

|wn(x)|
dV, (21)

where wn is the velocity of the actuator normal to its surface. In this way the integral in time has
been transformed into an integral in space, which leads to a form more suitable for discretization.

For illustration purposes we assume a force uniform in space and an actuator moving with
constant velocity in time, see figure 3b. A finite volume Ωi,j gets a contribution if it is intersected
by the area swept out by the moving actuator:

Ii,j =

(

∫ tn+1

tn
F (t) dt

)

i,j

=
f b

|wn|

∫∫

V ∩Ωi,j

dV = hi,jl
f b

|wn|
, (22)

where hi,jl is the part of Ωi,j swept out by panel l during a time step. The advantage is that this
discretization conserves the total impulse that is added to the flow. Furthermore, our proposed
discretization is suitable for large time steps: it exerts a force over the entire region where the
actuator has passed.
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Figure 3: Actuator surface moving in time.

5. Parallelization

The ECNS code is parallelized with the Portable Extensible Toolkit for Scientific Computation
(PETSc), ‘a suite of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations’ [11]. We build our discretization in
terms of sparse PETSc matrices and vectors. Once constructed, the user can perform matrix-
vector manipulations (such as matrix-vector and matrix-matrix multiplications, dot products,
etc.) without being concerned about the specifics of the parallel implementation. Since all
our operators (convection, diffusion, etc.) are programmed as matrices, the implementation
of implicit time discretizations is relatively straightforward. Furthermore a large collection of
linear algebra solvers is available within PETSc, and many existing external solver libraries can
be linked to it. For example, for the solution of the Poisson equation for the pressure we are
using the conjugate gradient method from PETSc with algebraic multigrid as preconditioner
from the external package ML [12].



6. Results

In this section we present two numerical experiments that support the work of the previous
sections. The first shows the energy conservation properties in space and time of our
discretization, and the second shows the sharp, non-diffusive representation of actuators
immersed in a flow.

6.1. Energy conservation

In order to investigate the energy conservation properties of ECNS we study the roll-up of a
vortex originating from the tip of a rotating wind turbine blade. We take an idealized setting:
a periodic domain of dimensions [0, 2π] × [0, 2π] with initial condition [13, 14]:

u =







tanh
(

y−π/2
δ

)

, y ≤ π,

tanh
(

3π/2−y
δ

)

, y > π,
v = ε sin(x), (23)

with δ = π/15, ε = 0.05. The viscosity of the flow is set to zero, but the perturbation of the
v-velocity will make sure that the shear-layer starts to roll-up. Impressions of the flow field at
t = 0 and t = 8 are given in figure 4. Since the flow is inviscid, smaller and smaller scales will
be created by the non-linear convective term, so that at some point the mesh is too coarse to
capture the solution: noise appears in the solution in the form of wiggles. The flow field is then
under-resolved, something which generally occurs in simulations of wind-turbine wakes.

Figure 5a shows a typical behavior of the energy error (k(t)− k(t = 0)) as a function of time
during the vortex roll-up. It can be seen that the error stays at machine precision, independent
of the time step. The simulation does not blow-up, even if the flow field becomes more and
more under-resolved. Figure 5b shows the enstrophy error (enstrophy is not conserved by the
spatial discretization), which indicates that the simulation is not only energy-conserving, but
also time-reversible. For more details we refer to [8].
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Figure 4: Vorticity field of shear layer roll-up at different time instances, computed with a
uniform grid with 2562 volumes. Iso-contours −4 . . . 4 with steps 0.5.
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Figure 5: Energy and enstrophy errors for Gauss 4 applied to shear-layer problem.

6.2. Actuator disk simulation

We will now consider the flow through an actuator disk at an angle of 30 degrees. A uniformly
loaded actuator disk presents a challenging test case due to the presence of a singularity at the
disk edge, where high gradients appear and vorticity is created. We take CT = 1

2
and Re = 100.

For studies on the effect of Reynolds number, thrust coefficient and mesh resolution we refer to
[15]. Figures 7a and 7b show the velocity and pressure in the entire flow domain. Figures 7c and
7d show a detail of the solution near the actuator disk. Compared to the conventional discrete
Dirac approach, shown in figures 6a - 6b, we see that both pressure and velocity contours are
more sharply captured. The small wiggles in the velocity contours of figure 7c reveal (‘warn’)
that the mesh is too coarse (the mesh Péclet condition is not satisfied), whereas this warning
is absent in figure 6a. The smearing effect of the discrete Dirac approach also leads to lower
pressure values at both sides of the jump; this can lead to underestimation of power and blade
loading when the method is applied to rotating turbine blades.
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Figure 6: Flow through a tilted actuator disk, discrete Dirac approach: Gaussian with ε = 2∆x.
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Figure 7: Flow through a tilted actuator disk, immersed actuator method.

6.3. Flow over a wing

To show that the proposed actuator method also work in 3D, we present the laminar flow over
a uniformly loaded rectangular wing, figure 8, computed with the parallelized version of the
code. The streamlines show the downwash behind the wing, and the formation of tip vortices.
In future work we will apply the moving actuator method from section 4.2 to this wing, leading
to a model for a rotating wind turbine blade.

7. Conclusions and future work

In this article we have presented the ingredients of an Energy-Conserving Navier-Stokes solver
(ECNS): (i) a spatial discretization on a staggered grid, (ii) a temporal discretization with Gauss
Runge-Kutta methods and (iii) immersed actuator methods to represent wind turbines. The
common rationale behind these ingredients is to obtain a numerically non-dissipative, yet stable
discretization, able to perform turbulence simulations with LES on coarse grids.

Ongoing work is on the selection of a proper LES model to represent the behavior of the
smallest unresolved scales. The basic idea behind LES is that only the large energy-containing
scales of the flow are resolved (scales larger than some predefined length scale ∆). An important
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Figure 8: Flow over an actuator surface representing a wing. Vertical velocity contours.

question, which is in line with our non-dissipative discretization approach, is what the minimum

required eddy viscosity is to damp scales smaller than ∆ sufficiently. This question is addressed
in [16]. It turns out that the eddy viscosity should not only depend on the magnitude of the
strain-rate tensor, ‖S‖, (as is the case in classical eddy-viscosity models), but also on its second
invariant, namely its determinant. The resulting qr-model has some interesting properties, for
example: the eddy viscosity vanishes in laminar flow, near walls and when ∆ is in the Kolmogorov
scale. This model will be the subject of future work.
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